Penjelasan Hukum Gravitasi Newton dan Kuat Medan Gravitasi
Sunday, 26 April 2020
1 Comment
Hukum Graviasi Newton juga dikenal hukum Gravitasi Universal merupakan hukum tarik – menarik antara dua benda bermassa yang berdekatan. Hukum Gravitasi Newton
terinspirasi mengapa orbit ulan mengelilingi bumi selalu tetap, mengapa
benda benda langit tidak saling bertabrakan ? Newton juga memikirkan
mengapa benda – benda yang di atas selalu jatuh ke atas permukaan bumi,
bukan jatuh ke atas maupun terlampar ke ruang angkasa.
Bunyi hukum Gravitasi Newton
Menurut Newton Semua benda yang berada di alam semesta akan menarik benda lain dengan gaya yang sebanding dengan massa benda benda tersebut dan berbanding terbalik dengan kuadrat jarak diantara benda-benda tersebut. Pernyataan tersebut kemudian dikenal dengan hukum Gravitasi Newton atau hukum gravitasi universal.
Bunyi hukum Gravitasi Newton
Menurut Newton Semua benda yang berada di alam semesta akan menarik benda lain dengan gaya yang sebanding dengan massa benda benda tersebut dan berbanding terbalik dengan kuadrat jarak diantara benda-benda tersebut. Pernyataan tersebut kemudian dikenal dengan hukum Gravitasi Newton atau hukum gravitasi universal.
Rumus Hukum Gravitasi Newton
Dari pernyataan Newton tentang hukum Gravitasi dapat dituliskan dalam rumus gravitasi Newton
F = G m1 m2 / r2
Dimana :
F = Gaya gravitasi Newton (N)
G = tetapan Gravitasi Newton (6.67 x 10 -11 kg-1 m3 s-2
m1 = massa benda 1 (kg)
m2 = massa benda 2 (kg)
r = jarak antara kedua benda (m)
Kuat medan gravitasi
Medan gravitasi diartikan sebagai area dissekitar benda bermassa yang masih dipengaruhi oleh gaya gravitasi. Besar kuat medan gravitasi sebanding dengan massa benda dan berbanding terbaik dengan kuadrat jarak benda terhadap pusat gravitasi. Semua benda yang berada di dalam medan gravitasi akan tertarik oleh gaya gravitasi tersebut.
Medan gravitasi diartikan sebagai area dissekitar benda bermassa yang masih dipengaruhi oleh gaya gravitasi. Besar kuat medan gravitasi sebanding dengan massa benda dan berbanding terbaik dengan kuadrat jarak benda terhadap pusat gravitasi. Semua benda yang berada di dalam medan gravitasi akan tertarik oleh gaya gravitasi tersebut.
Rumus kuat medan gravitasi
g = G m / r2
g = G m / r2
Sebuah benda yang berada di dekat permukaan bumi maka pada
benda tersebut akan bekerja gaya tari. Gaya ini mempunyai arah dan
besar di setiap titik dalam area tersebut. Arah gaya tersebut selalu
menuju pusat bumi dan besarnya dapat dihitung dengan persamaan
F = m . g
F = m . g
Kuat medan gravitasi
ditunjukkan dengan besarnya percepatan gravitasi. Makin besar
percepatan gravitasi, makin besar pula kuat medan gravitasinya. Besarnya
percepatan gravitasi akibat gaya gravitasi dapat dihitung dengan hukum
II Newton dan hukum gravitasi Newton.
Advertisment
M1 menyatakan massa bumi selanjutnya di tulis M saja. Percepatan a sering dinamakan percepatan akibat gravitasi bumi dan diberi simbol g.
Keterangan:
g : percepatan gravitasi (m/s2 atau N/kg)
G : tetapan umum gravitasi (N m2/kg2)
M : massa bumi (kg)
r : jari-jari bumi (m)
G : tetapan umum gravitasi (N m2/kg2)
M : massa bumi (kg)
r : jari-jari bumi (m)
Untuk benda yang terletak dekat permukaan bumi
maka r R (jari-jari benda dapat dianggap sama dengan jari-jari bumi),
maka persamaannya menjadi menjadi :
Yang Mempengaruhi Kuat Medan Gravitasi
Tetapan g0 disebut percepatan akibat gravitasi
bumi di permukaan bumi. Percepatan akibat gravitasi tidak tergantung
pada bentuk, ukuran, sifat, dan massa benda yang ditarik, tetapi
percepatan ini dipengaruhi oleh ketinggian kedalaman dan letak lintang.
Ketinggian
Percepatan akibat gravitasi bumi pada ketinggian h dari permukaan bumi dapat dihitung melalui persamaan berikut.
Hubungan g dengan Ketinggian (h)
Kedalaman
Percepatan akibat gravitasi bumi pada kedalaman d, dapat dianggap berasal dari tarikan bagian bumi berupa bola yang berjarijari (R – d).
Jika massa jenis rata-rata bumi ρ, maka massa bola dapat di tentukan dengan persamaan berikut.
Berdasarkan persamaan di atas, diperoleh percepatan gravitasi bumi pada kedalaman d adalah sebagai berikut.
Letak Lintang
kita ketahui bahwa jari-jari bumi tidak rata.
Makin ke arah kutub, makin kecil. Hal ini menyebabkan percepatan
gravitasi bumi ke arah kutub makin besar. Percepatan gravitasi bumi
terkecil berada di ekuator.
Gambar diatas melukiskan kurva g sebagai fungsi sudut lintang.
Percepatan gravitasi di berbagai tempat
Seperti halnya dengan gaya gravitasi,
percepatan merupakan besaran vektor. Misalnya percepatan gravitasi pada
suatu titik A yang diakibatkan oleh dua benda bermassa m1 dan m2 harus ditentukan dengan cara menjumlahkan vektor-vektor percepatan gravitasinya.
Percepatan gravitasi di titik A yang disebabkan oleh benda bermassa m1 dan m2 sebagai berikut.
Besar percepatan gravitasi di titik A dapat ditentukan dengan menggunakan persamaan berikut.
dengan merupakan sudut antara g1 dan g2.
Berdasakan hukum gravitasi Newton maka setiap tempat dibumi kan mendapat pengaruh dari gaya gravitasi bumi yang menyebabkan setiap benda akan tertarik menuji pusat bumi. Dengan asumsi bumi itu bulat maka dapat disimpulkan arah medan gravitasi bumi aka membentuk garis lurus dan selalu menuju ke pusat bumi, kuat medan gravitasi bumi di setiap titik dipermukaan bumi besarnya sama. Namun, pada kenyataannya bumi tidak bulat tetapi pepat pada kedua kutub dan menggembung pada khatulistiwa sehingga kuat medan gravitasi bumi di khatulistiwa berbeda dengan kuat medan gravitasi bumi dikutub. Kuat medan gravitasi bumi di khatlistiwa lebih kecil daripada kuat medan gravitasi bumi di kutub. Seperti yang sudah kita ketahui bumi mengandung banyak mineral dan bahan tambang. Kuat medan gravitasi bumi disekitar tempat yang mengandung bahan tambang lebih besar dibandingkan dengan kuat medan gravitasi bumi di daerah yang tidak mengandung bahan tambang. Pegnungan juga mempengaryhu kuat medan gravitasi bumi. Benda yang berada dekat di kaki gunung akan tertarik ke arah pusat gunung dan pusat bumi. Kedua tarikan tersebut akan menghasilkan kuat medan gravitasi yang berbeda arah. Akibatnya kuat medan gravitasi bumi tidak tepat mengarah pada pusat bumi tetapi sedikit berbelok menuju pusat gunung.
Demikianlah sekilah tentang gaya gravitasi Newton dan kuat medan gravitasi. Semoga bermanfaat.
This bodily help demonstrates method to|tips on how to} properly design options generally discovered on molded elements. We created an in depth guide to precision machining resin substitutes for ABS, PC, PP, and other generally molded thermoplastics. The electrical discharge machining or spark erosion process has turn into widely utilized in mould making. As properly as allowing the formation of shapes that are be} troublesome to machine, the method permits pre-hardened moulds to be formed in order that no warmth therapy is required.
ReplyDelete